If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10c^2+3c-4=0
a = 10; b = 3; c = -4;
Δ = b2-4ac
Δ = 32-4·10·(-4)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*10}=\frac{-16}{20} =-4/5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*10}=\frac{10}{20} =1/2 $
| -182=-13x | | 14n^2+29+12=0 | | −2x+3+7x=−12 | | 23-9x=-5(6x+5)-5(-8-4x) | | 4(3-7)=6x+5 | | 7s+69=11s+65 | | 14w+15w=-6 | | 7(x+3)=2(4x-6) | | 12w+6.2=-2 | | 2(x+3)=7(x+2) | | 3b+57+8b+90=180 | | 3b+57=8b+90 | | 12/3n=-2 | | 47.7+x=2x-74 | | 3x²-68x+252=0 | | 2x^2-(3/2)=0 | | -7x+-10x=136 | | 4t=8t+1 | | -7-10x=136 | | 2+5x=x-12 | | m+3/8+3m-1/14=2m-3/7+3m+1/16 | | p=100−5 | | 7s+6=4s+9 | | x+26=21 | | 2c+2=9c-3 | | -(-5-a)=17-2a | | 8y-90=3y+20 | | 8y-90+3y+20=90 | | 4/5h=24 | | 8y-90+3y+20=180 | | 59/x=58 | | 1/2(4z-8)=13 |